s3methods.Rd
These functions extract all visible tables from a ResultsElement or related classes produced by GAMLj3 and print them in R style.
These functions extract all visible tables from a list of tables produced by GAMLj3 and print them in R style.
# S3 method for class 'ResultsElement'
summary(object, ...)
# S3 method for class 'gamlj_list'
summary(object, ...)
# S3 method for class 'jmvrtable'
print(x, ...)
# S3 method for class 'jmvrobj'
print(x, ...)
# S3 method for class 'gamlj_list'
print(x, ...)
# S3 method for class 'gamlj'
coef(object, ...)
fit(x, ...)
# S3 method for class 'gamlj'
fit(x, ...)
# S3 method for class 'gamlj'
em_means(object, formula = NULL, ...)
a list of table as data.frame
a list of tables as data.frame
data(fivegroups)
fivegroups$Group<-factor(fivegroups$Group)
gmod<-GAMLj3::gamlj_lm(
formula = Score ~Group,
data = fivegroups)
summary(gmod)
#> Model Info
#>
#> info value specs
#> 1 Model Type Linear Model OLS Model for continuous y
#> 2 Model lm Score ~ 1 + Group
#> 3 Distribution Gaussian Normal distribution of residuals
#> 4 Omnibus Tests F
#> 5 Sample size 170
#> 6 Converged yes
#> 7 Y transform none
#> 8 C.I. method Wald
#>
#>
#> Model Fit
#>
#> r2 ar2 df1 df2 f p
#> 1 0.1472811 0.1318705 3 166 9.557137 7.399073e-06
#>
#>
#> ANOVA Omnibus tests
#>
#> source ss df f p etaSqP
#> 1 Model 7.483173 3 9.557137 7.399073e-06 0.1472811
#> 2 Group 7.483173 3 9.557137 7.399073e-06 0.1472811
#> 3 Residuals 43.325624 166 NA NA NA
#> 4 Total 50.808798 169 NA NA NA
#>
#>
#> Parameter Estimates (Coefficients)
#>
#> source label estimate se est.ci.lower est.ci.upper
#> 1 (Intercept) (Intercept) 0.1561919 0.03935543 0.07849021 0.2338936
#> 2 Group1 2 - 1 -0.1001010 0.11481160 -0.32678019 0.1265782
#> 3 Group2 3 - 1 0.2435657 0.10831305 0.02971695 0.4574144
#> 4 Group3 4 - 1 0.4431212 0.10831305 0.22927250 0.6569699
#> beta df test p
#> 1 -0.02539755 166 3.9687510 1.073436e-04
#> 2 -0.18256283 166 -0.8718719 3.845375e-01
#> 3 0.44421165 166 2.2487194 2.584581e-02
#> 4 0.80815829 166 4.0911157 6.682737e-05
#>
#>
data(fivegroups)
fivegroups$Group<-factor(fivegroups$Group)
gmod<-GAMLj3::gamlj_lm(
formula = Score ~Group,
data = fivegroups)
summary(gmod)
#> Model Info
#>
#> info value specs
#> 1 Model Type Linear Model OLS Model for continuous y
#> 2 Model lm Score ~ 1 + Group
#> 3 Distribution Gaussian Normal distribution of residuals
#> 4 Omnibus Tests F
#> 5 Sample size 170
#> 6 Converged yes
#> 7 Y transform none
#> 8 C.I. method Wald
#>
#>
#> Model Fit
#>
#> r2 ar2 df1 df2 f p
#> 1 0.1472811 0.1318705 3 166 9.557137 7.399073e-06
#>
#>
#> ANOVA Omnibus tests
#>
#> source ss df f p etaSqP
#> 1 Model 7.483173 3 9.557137 7.399073e-06 0.1472811
#> 2 Group 7.483173 3 9.557137 7.399073e-06 0.1472811
#> 3 Residuals 43.325624 166 NA NA NA
#> 4 Total 50.808798 169 NA NA NA
#>
#>
#> Parameter Estimates (Coefficients)
#>
#> source label estimate se est.ci.lower est.ci.upper
#> 1 (Intercept) (Intercept) 0.1561919 0.03935543 0.07849021 0.2338936
#> 2 Group1 2 - 1 -0.1001010 0.11481160 -0.32678019 0.1265782
#> 3 Group2 3 - 1 0.2435657 0.10831305 0.02971695 0.4574144
#> 4 Group3 4 - 1 0.4431212 0.10831305 0.22927250 0.6569699
#> beta df test p
#> 1 -0.02539755 166 3.9687510 1.073436e-04
#> 2 -0.18256283 166 -0.8718719 3.845375e-01
#> 3 0.44421165 166 2.2487194 2.584581e-02
#> 4 0.80815829 166 4.0911157 6.682737e-05
#>
#>