gamlj_gmixed.Rd
Generalized Mixed Model
gamlj_gmixed(
formula = NULL,
data = NULL,
model_type = "logistic",
dep = NULL,
factors = NULL,
covs = NULL,
model_terms = NULL,
fixed_intercept = TRUE,
cluster = cluster,
re = NULL,
re_corr = "all",
re_lrt = FALSE,
re_ci = FALSE,
nested_terms = NULL,
nested_intercept = NULL,
nested_re = NULL,
es = list("expb"),
expb_ci = TRUE,
estimates_ci = FALSE,
ci_method = "wald",
boot_r = 1000,
ci_width = 95,
contrasts = NULL,
contrast_custom_values = NULL,
contrast_custom_focus = NULL,
show_contrastnames = TRUE,
show_contrastcodes = FALSE,
plot_x = NULL,
plot_z = NULL,
plot_by = NULL,
plot_raw = FALSE,
plot_yscale = FALSE,
plot_xoriginal = FALSE,
plot_black = FALSE,
plot_around = "none",
plot_re = FALSE,
plot_re_method = "average",
plot_scale = "response",
emmeans = NULL,
posthoc = NULL,
simple_x = NULL,
simple_mods = NULL,
simple_interactions = FALSE,
covs_conditioning = "mean_sd",
ccm_value = 1,
ccp_value = 25,
ccra_steps = 1,
covs_scale_labels = "labels",
adjust = list("bonf"),
covs_scale = NULL,
scale_missing = "complete",
norm_test = FALSE
)
(optional) the formula to use, see the examples
the data as a data frame
Select the generalized linear model:
logistic
,probit
,nb
for negative binomial
poisson
,multinomial
, ordinal
for cumulative logit models.
a string naming the dependent variable from data
; the
variable must be numeric. Not needed if formula
is used.
a vector of strings naming the fixed factors from
data
. Not needed if formula
is used.
a vector of strings naming the covariates from data
. Not
needed if formula
is used.
a list of character vectors describing fixed effects
terms. Not needed if formula
is used.
TRUE
(default) or FALSE
, estimates
fixed intercept. Not needed if formula
is used
and "1" is passed explicitly to the formula.#'
a vector of strings naming the clustering variables from
data
, not needed if formula
is defined.
a list of lists specifying the models random effects.
'all'
, 'none'
(default), or 'block'
.
When random effects are passed as list of length 1, it decides whether the
effects should be correlated, non correlated. If 're'
is a list of
lists of length > 1, the option is automatially set to 'block'
. The
option is ignored if the model is passed using formula
.
TRUE
or FALSE
(default), LRT for the random
effects
TRUE
or FALSE
(default), confidence intervals
for the random effects
a list of character vectors describing effects terms for the nested model. It can be passed as right-hand formula.
TRUE
(default) or FALSE
, estimates
fixed intercept. Not needed if formula
is used.
a list of lists specifying the models random effects.
Effect size indices. expb
(default) exponentiates the
coefficients. For dichotomous dependent variables relative risk indices
(RR) can be obtained. marginals
computes the marginal effects.
TRUE
(default) or FALSE
, exp(B) CI in table
TRUE
or FALSE
(default), parameters CI
in table
The method used to compute the confidence intervals. 'wald'
uses the Wald method to compute standard
errors and confidence intervals. `profile` computes Profile Likelihood Based Confidence Interval, in which
the bounds are chosen based on the percentiles of the chi-square distribution around the maximum likelihood
estimate. 'quantile'
performs a non-parametric boostrap, with boot_r
repetitions, and compute
the CI based on the percentiles of the boostrap distribution. 'bcai'
implements the bias-corrected bootstrap method.
a number bootstrap repetitions.
a number between 50 and 99.9 (default: 95) specifying the confidence interval width for the plots.
a named vector of the form c(var1="type",
var2="type2")
specifying the type of contrast to use, one of
'deviation'
, 'simple'
, 'dummy'
, 'difference'
,
'helmert'
, 'repeated'
or 'polynomial'
. If NULL,
simple
is used. Can also be passed as a list of list of the form
list(list(var="var1",type="type1")).
a named list with the custom contrast weights, of the form list(factorname=numeric vector)
, for instance list(factorname=c(1,1,-2))
.
only one constrast per variable is allowed.
if any factor is coded with 'custom'
, when TRUE
or NULL
(default) the coefficients, simple effects and simple interactions
are focused on the custom contrast. If FALSE
, variables are coded accordingly to the passed contrast, but
no special table or test is devoted to the contrast.
TRUE
or FALSE
(default), shows raw
names of the contrasts variables in tables
TRUE
or FALSE
(default), shows
contrast coefficients tables
a string naming the variable placed on the horizontal axis of the plot
a string naming the variable represented as separate lines in the plot
a list of string naming the variables defining the levels for multiple plots
TRUE
or FALSE
(default), plot raw data along
the predicted values
TRUE
or FALSE
(default), set the Y-axis
range equal to the range of the observed values.
TRUE
or FALSE
(default), use original
scale for covariates.
TRUE
or FALSE
(default), use different
linetypes per levels.
'none'
(default), 'ci'
, or 'se'
.
Use no error bars, use confidence intervals, or use standard errors on the
plots, respectively.
TRUE
or FALSE
(default), add predicted values
based on random effect in plot
.
Plot ordinal model predicted values in as probabilities
(response
) or predicted class (mean.class
)
a rhs formula with the terms specifying the marginal means
to estimate (of the form '~x+x:z'
)
a rhs formula with the terms specifying the table to apply
the comparisons (of the form '~x+x:z'
). The formula is not expanded,
so 'x*z'
becomes 'x+z'
and not 'x+z+x:z'
. It can be
passed also as a list of the form '`list("x","z",c("x","z")`'
The variable for which the simple effects (slopes) are computed
the variable that provides the levels at which the simple effects are computed
should simple Interactions be computed
'mean_sd'
(default), 'custom'
, or
'percent'
. Use to condition the covariates (if any)
Covariates conditioning mean offset value: how many
st.deviations around the means used to condition simple effects and plots.
Used if covs_conditioning
='mean_sd'
Covariates conditioning percentile offset value: number of
percentiles around the median used to condition simple effects and plots.
Used if covs_conditioning
='percent'
Covariate condition steps from min to max:
At how many values between min and max should the covariate be conditioned simpleScale
='range'
how the levels of a continuous moderator should
appear in tables and plots: labels
, values
and
values_labels
, ovalues
, `ovalues_labels. The latter two refer
to the variable orginal levels, before scaling.
one or more of 'none'
, 'bonf'
,'tukey'
'holm'
,'scheffe'
, 'tukey'
; provide no, Bonferroni,
Tukey and Holm Post Hoc corrections respectively.
a list of lists specifying the covariates scaling, one of
'centered to the mean'
, 'standardized'
, or 'none'
.
'none'
leaves the variable as it is
.
TRUE
or FALSE
(default), provide a test for
normality of residuals
A results object containing:
results$model | a property | ||||
results$info | a table | ||||
results$main$r2 | a table of R | ||||
results$main$fit | a table | ||||
results$main$anova | a table of omnibus | ||||
results$main$coefficients | a table | ||||
results$main$contrastCodeTables | an array of contrast coefficients tables | ||||
results$main$marginals | a table | ||||
results$main$relativerisk | a table | ||||
results$main$random | a table | ||||
results$main$randomcov | a table | ||||
results$main$multirandom | an array | ||||
results$main$ranova | a table | ||||
results$posthoc | an array of post-hoc tables | ||||
results$simpleEffects$anova | a table of ANOVA for simple effects | ||||
results$simpleEffects$coefficients | a table | ||||
results$simpleInteractions | an array of simple interactions tables | ||||
results$emmeans | an array of predicted means tables | ||||
results$mainPlots | an array of results plots | ||||
results$plotnotes | a html | ||||
results$predicted | an output | ||||
results$residuals | an output |
Tables can be converted to data frames with asDF
or as.data.frame
. For example:
results$info$asDF
as.data.frame(results$info)
data(clustermanymodels)
clustermanymodels$ybin<-factor(clustermanymodels$ybin)
GAMLj3::gamlj_gmixed(formula = ybin ~ 1 + x+( 1|cluster ),
data = clustermanymodels,
model_type="logistic"
)
#>
#> GENERALIZED MIXED MODEL
#>
#> Model Info
#> ──────────────────────────────────────────────────────────────────────────
#> Info
#> ──────────────────────────────────────────────────────────────────────────
#> Model Type Logistic Model Model for binary y
#> Model lme4::glmer ybin ~ 1 + x + ( 1 | cluster )
#> Distribution Binomial Dichotomous event distribution of y
#> Link function Logit Log of the odd of y
#> Direction P(y=1)/P(y=0) P( ybin = 1 ) / P( ybin = 0 )
#> Sample size 1800
#> Converged yes
#> C.I. method Wald
#> ──────────────────────────────────────────────────────────────────────────
#> Note. All covariates are centered to the mean
#>
#>
#> MODEL RESULTS
#>
#> Model Fit
#> ─────────────────────────────────────────────────────────────────────
#> Type R² df LRT X² p
#> ─────────────────────────────────────────────────────────────────────
#> Conditional 0.0436968 2.0000000 39.7507885 < .0000001
#> Marginal 0.0185754 1.0000000 26.8376082 0.0000002
#> ─────────────────────────────────────────────────────────────────────
#>
#>
#> Additional Indices
#> ───────────────────────────────────────────────────────────────
#> Info Model Value Comment
#> ───────────────────────────────────────────────────────────────
#> LogLikelihood -1210.6506201
#> AIC 2427.3012403 Less is better
#> BIC 2443.7878661 Less is better
#> Deviance 2421.3012403 Less is better
#> Residual DF 1797.0000000
#> Chi-squared/DF 0.9822442 Overdispersion indicator
#> ───────────────────────────────────────────────────────────────
#>
#>
#> Fixed Effects Omnibus Tests
#> ──────────────────────────────────────────
#> X² df p
#> ──────────────────────────────────────────
#> x 26.24380 1.000000 0.0000003
#> ──────────────────────────────────────────
#>
#>
#> Parameter Estimates (Fixed Coefficients)
#> ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> Names Effect Estimate SE Exp(B) Lower Upper z p
#> ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> (Intercept) (Intercept) -0.28754013 0.072358483 0.7501065 0.6509255 0.8643996 -3.973828 0.0000707
#> x x 0.05075563 0.009907654 1.0520658 1.0318332 1.0726951 5.122871 0.0000003
#> ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#>
#>
#> Random Components
#> ────────────────────────────────────────────────────────────────────
#> Groups Name Variance SD ICC
#> ────────────────────────────────────────────────────────────────────
#> cluster (Intercept) 0.08642239 0.2939769 0.02559685
#> Residual 3.28986813 1.8137994
#> ────────────────────────────────────────────────────────────────────
#> Note. Number of Obs: 1800 , Number of groups: cluster 30
#>